
Chapter 2
Arithmetic in the Islamic World

1 The Decimal System

Muslim mathematicians were the first people to write numbers the way we do, and,
although we are the heirs of the Greeks in geometry, the part of our legacy from the
Muslim world is our arithmetic. This is true even if it was Hindu mathematicians in
India, probably a few centuries before the rise of Islamic civilization, who began
using a numeration system with these two characteristics:

1. The numbers from one to nine are represented by nine digits, all easily made by
one or two strokes.

2. The rightmost digit of a numeral counts the number of units, and a unit in any
place is ten of that to its right. Thus, the digit in the second place counts the
number of tens, that in the third place the number of hundreds (which is ten
tens), and so on. A special mark, the zero, is used to indicate that a given place is
empty.

These two properties describe our present system of writing whole numbers, and
we may summarize the above by saying the Hindus were the first people to use a
cipherized, decimal, positional system, “Cipherized” means that the first nine
numbers are represented by nine ciphers, or digits, instead of accumulating strokes
as the Egyptians and Babylonians did, and “decimal” means that it is base 10.
However, the Hindus did not extend this system to represent parts of the unit by
decimal fractions, and, since it was the Muslims who first did so, they were the first
people to represent numbers as we do. Quite properly, therefore, we call the system
“Hindu–Arabic”.

As to when the Hindus first began writing whole numbers according to this
system, the available evidence shows that the system was not used by the great
Indian astronomer Āryabhata (born in A.D. 476), but it was in use by the time of his
pupil, Bhaskara I, around the year A.D. 520. (See Van der Waerden and Folkerts
for more details.)
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News of the discovery spread, for, about 150 years later, Severus Sebokht, a
bishop of the Nestorian Church (one of the several Christian faiths existing in the
East at the time), wrote from his residence in Keneshra on the upper Euphrates river
as follows:

I will not say anything now of the science of the Hindus, who are not even Syrians, of their
subtle discoveries in this science of astronomy, which are even more ingenious than those
of the Greeks and Babylonians, and of the fluent method of their calculation, which sur-
passes words. I want to say only that it is done with nine signs. If those who believe that
they have arrived at the limit of science because they speak Greek had known these things
they would perhaps be convinced, even if a bit late, that there are others who know
something, not only Greeks but also men of a different language.

It seems, then, that Christian scholars in the Middle East, writing only a few
years after the great series of Arab conquests had begun, knew of Hindu numerals
through their study of Hindu astronomy. The interest of Christian scholars in
astronomy and calculation was, in the main, due to their need to be able to calculate
the date of Easter, a problem that stimulated much of the Christian interest in the
exact sciences during the early Middle Ages. It is not a trivial problem, because it
requires the calculation of the date of the first new moon following the spring
equinox. Even the great nineteenth-century mathematician and astronomer C.F.
Gauss was not able to solve the problem completely, so it is no wonder that Severus
Sebokht was delighted to find in Hindu sources a method of arithmetic that would
make calculations easier.

We can perhaps explain the reference to the “nine signs” rather than the ten as
follows: the zero (represented by a small circle) was not regarded as one of the
digits of the system but simply a mark put in a place when it is empty, i.e., when no
digit goes there. The idea that zero represents a number, just as any other digit does,
is a modern notion, foreign to medieval thought. This is clearly shown in
al-Khalili’s auxiliary tables for certain combinations of trigonometric functions
depending on two arguments, x and y. In the case of values of x and y that would
produce a value outside the domain of the arcos function al-Khālilī writes “0 0,”
which can only mean ‘no value’ not zero degrees zero minutes.

With this evidence that the Hindu system of numeration had spread so far by the
year A.D. 662, it may be surprising to learn that the earliest Arabic work we know
of explaining the Hindu system is one written early in the ninth century whose title
may be translated as The Book of Addition and Subtraction According to the Hindu
Calculation. The author was Muḥammad ibn Mūsā al-Khwārizmī who, since he
was born around the year A.D. 780, probably wrote his book after A.D. 800.

We mentioned in Chapter 1 that al-Khwārizmī, who was one of the earliest
important Islamic scientists, came from Central Asia and was not an Arab. This was
not unusual, for, by and large, in Islamic civilization it was not a man’s place (or
people) of origin, his native language, or (within limits) his religion that mattered,
but his learning and his achievements in his chosen profession.

The question arises, however, where al-Khwārizmī learned of the Hindu arith-
metic, given that his home was in a region far from where Bishop Sebokht learned
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of Hindu numerals 150 years earlier. In the absence of printed books and modern
methods of communication, the penetration of a discovery into a given region by no
means implied its spread to adjacent regions. Thus al-Khwārizmī may have learned
of Hindu numeration not in his native Khwārizm but in Baghdād, where, around
780, the visit of a delegation of scholars from Sind to the court of the Caliph
al-Manṣūr led to the translation of Sanskrit astronomical works. Extant writings of
al-Khwārizmī on astronomy show he was much influenced by Hindu methods, and
it may be that it was from his study of Hindu astronomy that he learned of Hindu
numerals.

Whatever the line of transmission to al-Khwārizmī was, his work helped spread
Hindu numeration both in the Islamic world and in the Latin West. Although this
work has not survived in the Arabic original (doubtless because it was superseded
by superior treatises later on), we possess a Latin translation, made in the twelfth
century A.D. From the introduction to this we learn that the work treated all the
arithmetic operations and not only addition and subtraction as the title might
suggest. Evidently al-Khwārizmī’s usage is parallel to the somewhat dated English
description of a child who is studying arithmetic as “learning his sums.”

2 Kūshyār’s Arithmetic

2.1 Survey of The Arithmetic

As we have said, al-Khwārizmī’s book on arithmetic is no longer extant in Arabic,
and one of the earliest works on Hindu numeration whose Arabic text does exist
was written by a man named Kūshyār b. Labbān, who was born in the region south
of the Caspian Sea some 150 years after al-Khwārizmī wrote his book on arith-
metic. Although Kūshyār was an accomplished astronomer, we know very little
about his life, but despite this personal obscurity his works exerted some influence,
and his treatise on arithmetic, whose title means Principles of Hindu Reckoning,
became one of the main arithmetic textbooks in the Islamic world.

Kūshyār’s concise treatise is a carefully written introduction to arithmetic,
divided into two main parts. The first contains, after a brief introduction, nine
sections on decimal arithmetic, beginning with “On Understanding the Forms of the
Nine Numerals.” In this the nine numerals are given in a form standard in the east,
namely:

and the place-value system is explained. Zero is introduced as the symbol to be
placed in a position “where there is no number.” The Arabic word for zero, “ṣifr,”
comes from the verb “ṣafira” which means “to be empty or void” and it is the
source, via French and Spanish, of our word “cipher”. It is even the source, via
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Italian, of our word “zero.” The sections following the first are “On Addition,” “On
Subtraction”—with halving treated in a special subsection, “On Multiplication,”
“On the Results of Multiplication,” “On Division,” “On the results of Division,”
“On the Square Root,” and “On Checking,” through casting out nines.

The sixteen sections of the second part contain an explanation of the arithmetic
of a base-60 positional system, but the book concludes with a section that tells how
to find the cube root of a number in the decimal system. The base-60 system, which
is now called a sexagesimal system, was important to astronomers because angles
were measured, and trigonometric functions were tabulated, according to this
system, and because its unified treatment of whole numbers and fractions made
calculations so much simpler. We shall say more of this later.

As we follow Kūshyār’s explanation of the decimal system it is well to bear in
mind that he was explaining arithmetic to people who would be computing not with
pen or paper but with a stick (or a finger) on a shallow tray covered with fine sand,
which we shall refer to as a “dust board.” Because small boards are more conve-
nient to carry around than large ones, it is desirable to have arithmetic algorithms
that do not require writing down several rows of numbers. On the other hand, it is
easy to erase on a dust board, so algorithms that require considerable erasing pose
no problem, and we shall see how the algorithms for addition, subtraction, multi-
plication, division, and extracting square roots were designed with this feature of
the dust board in mind.

In the text of his book Kūshyār writes out, in words, all the names of the
numbers, and it is only when he is actually exhibiting what is written down on the
dustboard that he uses the Hindu-Arabic ciphers. A reason for this may be that
explanations were considered as text, and therefore written out in words, like any
other text. The examples of what was written on the dust board, however, may have
been viewed as illustrations, much like a diagram in a geometrical argument, and
they were there to show what the calculator would actually see on the dust board.

2.2 Addition

As Kūshyār explains this, the numbers to be added are written in two rows, one
above the other, so that places of the same value are in the same column. He gives
the example of adding 839 to 5625 and, unlike our method, begins his addition by
adding from the highest place common to both numbers, in this case the hundreds’
place, down. At each stage the answer obtained so far replaces part of the number
on the top. Figure 1 illustrates his steps, beginning with 56 + 8 = 64, and an arrow
(!) shows that the display on the right replaces, on the dust board, that on the left.
Thus, at any time, there are only two numbers on the dust board, arranged in
columns, and, in the end, the answer has replaced the number on the top. Unlike our
method, the method Kūshyār explains obtains the leftmost digit of the answer first.
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2.3 Subtraction

Again Kūshyār explains the method by the same numbers, subtracting 839 from
5625, and again he works from left to right. He explains that since 8 cannot be
subtracted from 6 it must be subtracted from 56 to produce 48, so the 56 of 5625 is
erased and replaced by 48. Thus, working from place to place, Kūshyār obtains the
answer, 4786 (Fig. 2). There is no “borrowing” in Kūshyār’s procedure. He simply
notices that, for example, in the last step, since we cannot subtract 9 from 5 we must
subtract it from 95. Just as with addition Kūshyār works from the higher places to
the lower, and at each stage the partial answer appears as part of the number on top.

His treatment of halving, which he considers to be a variant of subtraction, sheds
light on his treatment of fractions. He begins with 5625 (as usual), but this time he
starts on the right (Fig. 3). He says to set down 5625 and then take half offive, which
is two and a half. “Put two in the place of the five and put the 1

2 under it, thirty.”
He is using here, for fractions, the sexagesimal system, which goes back to the

Babylonians and uses the principle of place value to represent fractions in terms of
multiples of the subunits 1/60, 1/602 = 1/3600, etc. He explains the system more
fully in the second part of the treatise, and here he contents himself with using his
readers’ familiarity both with the local monetary system in which a dirham con-
tained 60 fulūs, and with degrees, in which 1 degree contains 60 minutes. Thus he
tells his reader, in effect, “If you wish to think of 5625 as dirhams (degrees), then

Fig. 1

Fig. 3

Fig. 2
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think of 5
2 dirhams as 2 dirhams and 30 fulūs (2 degrees and 30 minutes).” The next

two steps of his calculation, as shown in Fig. 3, are to halve the 2 in the 10’s place
and then the 6 in the 100’s place, and now he must take half of the 5 in the 1000’s
place. Kūshyār values the 5 in terms of the preceding place, and so looks on it as 50
hundreds. Its half is thus 25 hundreds, and so in the last step he adds the 2500 to the
half of 625 to obtain the answer shown in Fig. 3.

2.4 Multiplication

The algorithm for multiplication shows a thorough understanding of the rule for
multiplying powers of 10, for to multiply 243 by 325 Kūshyār requires his reader to
arrange the numerals so the 3 of 325 is directly above the 3 of 243 (Fig. 4). The
total array occupies five columns, because hundreds multiplied by hundreds yields
tens of thousands ((N � 100) � (M � 100) = N � M � 10,000). Since 3 � 2 = 6, he
places the 6 directly above the 2, i.e., in the ten thousands’ place, and he remarks
that had the product produced a two-digit number (e.g., had it been 4 � 3 = 12), the
tens’ digit of the product would be placed in the column to the left of the 2. This is
illustrated at the next step where, since 3 � 4 = 12, he places the 2 of the 12 directly
above the 4 and adds the 1 to the 6 to get 72. Finally, the top 3 is replaced by the
9 = 3 � 3, since he no longer needs to multiply by it.

Now we will be multiplying 243 by the upper 2, and since this counts “tens” and
not “hundreds” we must, if we are to continue adding the answers to the top row in
the columns above the bottom numerals, shift 243 one place to the right, since the

Fig. 4
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powers of 10 represented by the answers will be one less. Thus, we begin in the
second row of Fig. 4, and as before, the last digit of the lower number (3) stands
under the current multiplier (2). Then, since 2 � 2 = 4, we add the 4 to 72 to get 76,
and the remaining steps of Row 2 will be clear to the reader who has followed those
of Row 1. Again, a shift to the right automatically lines up the figures so that the
answers are put in the correct place. We thus have Row 3 of Fig. 4, and the only
thing to be careful of is that on the last multiplication of a given sequence (for
example the final “5 � 3 = 15”) one does not add the final digit of the product to the
last multiplier (in this case, 5), but, instead, uses it to replace the multiplier.

2.5 Division

This operation offers Kūshyār no more trouble than multiplication, as the division
of 5625 by 243 shows. In Fig. 5 the divisor, 243, is written at the bottom and the
dividend, 5625, is written above that, its highest place written above the highest
place of the divisor. The first digit of the quotient, 2, is obtained by an estimate and
is written in the column above the last digit of the divisor, 243. In Fig. 5 the first
three steps show the process of subtracting 2 � 243 = 486 from 562. In this case, the
“2,” since it is written above the tens’ place of the dividend, means 20, and the
positioning automatically puts it in the right column. This process is shown in the
first four boxes of Fig. 5, and the fourth box says that 5625 – 20 � 243 = 765 Now
Kūshyār moves the divisor one column to the right, so that the next digit of the
quotient will be correctly aligned. The second row calculates 765 – 3 � 243 = 36,
and so, calculating digit by digit, beginning with the one in the highest place,
Kūshyār obtains the quotient (23) and remainder (36).

This answer, 23 + 36/243, is correct but raises the further question, “How big is
the fraction 36/243?” After all, an astronomer doing calculations with angles, or a
judge dividing up a sum of money as an inheritance, needs the answer in a usable
form. Thus, a standard chapter in many arithmetics is one explaining how to express
a fraction a/b in terms of some other subunits l/c, where c is a number appropriate to

Fig. 5
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what is being measured. For example, if we were measuring lengths in feet and
inches we would take c = 12, but Kūshyār proceeds to solve this problem for
c = 60.

Of course, if 36/243 = n/60, then n = 36 � 60/243, and this division produces a
quotient of 8 and a remainder of 216. So, if we think of the first remainder as being
the dirhams left after the division of 5625 dirhams among 243 people, then each
person’s share would be 23 dirhams 8 fulūs, with 216 fulūs left over. Or, we could
think of it as the division of an angle into 243 equal parts, so that each part would be
23°8′ with 216′ left over. This operation of multiplying a fraction, as 36/243, by 60
the Islamic authors called “raising,” and it was used to obtain base-60 expansions of
the fractional parts in a division. It is the analog of what we do to convert a fraction
to percent.

3 The Arithmetic of Common Fractions

Common fractions appear in Kūshyār’s work, as we have seen, in the context of
division, where the division of 5,625 by 243 leads to a quotient of 23 and a
remainder, 36, being written above the divisor. And Kūshyār refers to the quotient
as 23 and 36 parts of 243 [parts] making up the unit. However, common fractions
arise in practical problems of science, commerce, finance, law, etc. and practitioners
(and their teachers) developed a number of ways of relating such fractions to
simpler common fractions, and such fractions were discussed in numerous works of
arithmetic aimed at a wide audience. One such book, which was much studied in
the Maghrib, was the Book of Demonstration and Reminder, written by the twelfth
century the mathematician Abū Bakr Muḥammad al-Ḥaṣṣār.1 So far as is known it
was he who introduced the (now usual) notation of a horizontal bar to separate the
numerator of a common fraction from its denominator, a notation adopted by all
subsequent authors of arithmetic texts in the Maghrib. In his writings we also meet
for the first time a fivefold classification of fractions, which we shall discuss below.

The works on arithmetic were teaching texts, and teachers have always found it
useful to systematize knowledge in such a way that students can gain a view of the
whole subject. Thus, al-Ḥaṣṣār describes five kinds of fractions, the most basic
being simple fractions, i.e., the nine unit fractions ,     , …,1 2 1 101 3 . Then there were
fractions related to others, an example being fractions of the form c

d þ a
b � 1d, which

were written

a c
b d

:

1His other work, also on arithmetic, was titled Al-Kāmil (The Complete/Perfect).
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For example, the related fraction

5 4
8 9

would be read, “four ninths and five-eighths of a ninth.”
Writers could—and did—extend that notation to relate three or more fractions in

the same manner, and the related fraction

1 5 4
2 8 9

would be read four ninths and five times an eighth of a ninth and one half of an
eighth of a ninth.

The exact dates of al-Ḥaṣṣār are not known, but it was likely about a century
after he was born that the mathematician Aḥmad Ibn al-Bannā’ was born in
Marrakesh in 1256. During his lifetime he achieved sufficient fame as a skilled
mathematician and astronomer/astrologer to be invited to the capital, Fās (Fez), a
number of times by the Merinid sultans. (He was also famous as a mystic and
magician, who could work wonders!) He died in 1321, leaving fourteen books on
mathematics alone and a number of students who continued his work.

The two mathematical works for which Ibn al-Bannā’ is best known today are A
Summary Account of the Operations of Computation and Raising the Veil on the
Various Procedures of Calculation. The first was evidently too much of a summary
for some readers, since the second is a commentary on the first, expanding on the
material in it. The great Tunisian historian, Ibn Khaldūn, who was born very shortly
after Ibn al-Bannā’’s death and was well acquainted with mathematics, said of Ibn
al-Bannā’’s commentary, “It is an important work. We have heard our teachers
praise it, and it deserves that.”

In his Summary Ibn al-Bannā’ follows the classification we find in al-Ḥaṣṣār and
explains that to find the numerator of a related fraction

a c
b d

one multiplies the number written above the first denominator2 by the second
denominator and adds the product to the number above that denominator.3 Thus, in
the case above, the numerator would be c�b + a. He then states the general rule:
“One multiplies what is above the first denominator by the following denominators,
that which is above the second by the denominators following it, and so on to the
end of the line. Then one adds these products.” So, in the numerical example above,

2Since Arabic is read from right to left, ‘first’ denominator means the rightmost.
3We have relied on Souissi (1969).
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1 5 4
2 8 9

the numerator would be 4 � 8 � 2 + 5 � 2 + 1, i.e., 75. The denominator, of course,
would be 9 � 8 � 2, i.e., 144.

He then proceeds to give rules for dealing with fractions mixed with whole
numbers. For example, in the case of an expression such as

a c
b d

n

where n is a whole number, his rule amounts to calculating the numerator as
n � (b � d) + (a + c � b), that is, to say one interprets the expression as meaning the
sum of n and the fraction

a c
b d

:

But, if the whole number, n, is found on the other side of the related fraction the
numerator is the product of n and that of the related fraction.

Then there were different fractions, which were simply sums of fractions, ab þ c
d,

partitioned fractions, which was the term for products, a
b � cd, and, finally, fractions

separated by a sign of subtraction. (That sign was the Arabic word illā (“except”)
prefixed to the fraction being subtracted.

In the case of different fractions he obtains the numerator as we do, by multi-
plying each numerator by the other denominator and adding the two results. For
partitioned fractions Ibn al-Bannā’ writes, ‘One multiplies the numbers written
above the line by each other,’ a clear reference to the horizontal fraction bar. For the
case of subtraction he says that one proceeds as for addition but then subtracts the
smaller product from the larger.

The exposition of the theory and practice of calculating with fractions was, as the
above exposition hints, one that received considerable attention. Thus, Aḥmad b.
Mun‘im, who died in Marrakesh in 1228 (and of whom the reader will learn much
more later), devoted nearly half of his large work, The Laws of Calculation, to the
topic of fractions.

Some one hundred fifty years after the death of Ibn al-Bannā’, an Andalusian
mathematician, ‘Alī b. Muḥammad al-Qalaṣādī, who died in Tunis in 1486 (only 6
years before the voyage of Columbus), wrote a work whose title is an obvious
reference to the commentary of Ibn al-Bannā’, namely Removing the Veil from the
Science of Calculation. As did Ibn al-Bannā’, al-Qalaṣādī also wrote on religious
topics and literature, but it is his commentary on Ibn al-Bannā’’s Summary Account
that concerns us here.

In Part I of his book, in his discussion of multiplication, he gives some rules for
multiplication which make one realize why, in Kūshyār’s Hindu Reckoning, for
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example, one finds halving and doubling treated as separate topics.4 Thus,
al-Qalaṣādī says

“To multiply a number by three, add it to its double,”

and

“To multiply a number by six, add it to half of its product by ten,”

“To multiply a number by seven, put a zero to its right and subtract its triple from its
product by ten,” i.e. 7a = 10a − 3a, the product 3a being calculated as above.

But he goes on with more complicated rules, such as multiplying a number by
twelve by placing the number directly below itself and then placing the number
again below the two first, but so that the units place of the lowest line is lined up
with the tens places of the two lines above. Add these three numbers and the result
will be the answer. The calculation of 147 � 12 would look like this:

1 4 7

1 4 7

147

1764

Al-Qalaṣādī explains division as decomposing the dividend into parts equal to
the divisor, and then, in Part I, Chapter 5, he applies it to the problem of factoring
numbers. He first gives the usual test for seeing if a number is divisible by 9, a test
he calls ‘reducing the number by 9.’ He adds that if an even number is divisible by
9 then it is also divisible by 6 and 3. But if 3 or 6 remain when one reduces a
number by 9, as with such numbers as 48 and 78, then it is only divisible by 3 and
6.

If none of this works, reduce it by 8, and his procedure makes it clear that he
knows multiples of 1,000 are divisible by 8. So he only needs to reduce a three-digit
number by 8. For example, since 174 leaves a remainder of 6 when divided by 8 so
does is 3174.

For reduction by 7 his process mirrors long division, although his description of
it is interesting. He says, “Think of the leftmost digit as tens and add it to the digit to
its right, considered as being units. Reduce the sum by seven. Then add the
remainder [after this reduction], thought of, again, as tens, to the next digit to the
right, and continue the reduction in this way.”

He applies this procedure to 5236, where the calculations go
5236 ! 336 ! 56, where we have underlined the remainders after the successive
division by 7. One concludes 5236 is divisible by 7.

4Interestingly, however, according to Djebbar (1992) the treatment of doubling and halving as
separate topics in Arabic arithmetic was, after al-Ḥaṣṣār, dropped in the Maghrib and the topics
were dealt with as special cases of multiplication and division.
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All of this comes together in a problem in which he shows the reader how to
express a fraction as a related fraction. His rule is to express the denominator as a
product of factors and write those factors in a row (in descending order from right to
left) and place a line over the factors. The divide the numerator by these factors, one
after another. “You will obtain the result sought.” As with so much mathematical
instruction, this somewhat cryptic rule becomes clear with an example in which
al-Qalaṣādī shows how to express 75/144 as a related fraction.

“And if someone says to you, ‘Denominate seventy-five according to one
hundred forty-four,’ you decompose the denominator into nine, eight, and two and
divide the numerator first by two, obtaining 37 with a remainder of one, which you
put above the two. Then divide the quotient by eight to get four [with a reminder of
five, which you put above the eight].5 Put the four above the nine. The result will be
four-ninths and five-eighths of a ninth and a half of an eighth of a ninth. Write it as
follows:

1 5 4
2 8 9

:00

And, in following through his reasoning, one can see how this notation for
fractions, so different from ours, might have arisen.

In Part II, Chapter 4 al-Qalaṣādī treats the division of one expression involving
connected fractions by another of the same type. His rule is to form the product of
the numerator of each of the two fractions by the factors [of the denominator] of the
other, and then divide the product of the dividend by that of the divisor, after having
decomposed this (latter product) into its factors. He then gives the following
example: Divide and     of by     and     of    .6 7 1 53 4 2 51 45 7

Thus

5 3
7 4

is to be divided by

6 2
7 5

:

The numerator of the dividend is 26 and the factors of its denominator are 7 and
4. The numerator of the divisor is 20 and the factors of its divisor are 7 and 5. One
must then form the products 26 � 7 � 5 (= 910) and divide it by the products
20 � 7 � 4 (= 560). Decompose the latter number into its factors, which are 10, 8,
and 7 and divide 910 by these factors. He expresses the answer as

5At some point in the history of this text, the bracketed phrase I have inserted, clearly essential,
was left out.
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0 2 6
7 8 10

1

in other words, one and six-tenths and two-eighths of a tenth.
One is reminded of Kūshyār’s procedure in the example we gave earlier of

calculating in the sexagesimal system. In that case, it was converting the sexa-
gesimal numbers to whole numbers expressed in the decimal, positional system
then doing the calculation in that system, and finally converting the answer back to
sexagesimals. Here, one converts the related fractions to ordinary common frac-
tions, then calculates the quotient with them, and finally converts the result back to
related fractions.

4 The Discovery of Decimal Fractions

Today we use not sexagesimal but decimal fractions to represent the fraction
remaining after a division, and it now appears these were a contribution of the
Islamic world. Evidence for this claim is contained in The Book of Chapters on
Hindu Arithmetic, written in Damascus in the years A.D. 952–953 by Abū al-Ḥasan
al-Uqlīdisī. The name “al-Uqlīdisī” indicates that the author earned his living
copying manuscripts of Euclid (“Uqlīdis” in Arabic), but beyond this we know
nothing of the life of a man who seems to have been the first to use decimal
fractions, complete with the decimal point, and therefore the first to write numbers
as we do. Since al-Uqlīdisī specifically states in the preface to his book that he has
taken great pains to include the best methods of all previous writers on the subject,
it is hard to be sure that the decimal fractions were his own discovery, but their
complete absence in Indian sources makes it fairly certain that they were a dis-
covery of Islamic scientists.

Al-Uqlīdisī is also proud of the fact that he has collected ways of performing on
paper, with ink, algorithms usually performed by arithmeticians on the dust board,
and in his Book of Chapters he gives the following reasons for abandoning the dust
board in favor of pen and paper.

Many a man hates to show the dust board in his hands when he needs to use this art of
calculation (Hindu arithmetic) for fear of misunderstanding from those present who see it in
his hands. It is unbecoming him since it is seen in the hands of the good-for-nothings
earning their living by astrology in the streets.

It seems that the street astrologers could be recognized by their use of the dust
board, and al-Uqlīdisī urges the use of pen and paper to escape being taken for a
mendicant fortune teller.

Al-Uqlīdisī’s text contains four parts, of which the first two deal with the ele-
mentary and advanced parts of Hindu arithmetic, and it is in the second part where
decimal fractions first appear. This is in the section on doubling and halving
numbers, where he introduces them as one of the three ways of halving an odd
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number. The first way is the one described by Kūshyār who, to halve 5625, con-
sidered it as degrees or dirhams and wrote the result as in Fig. 3, where the lower
30 could be interpreted as fulūs or minutes. The second way is one al-Uqlīdisī calls
numerical, and describes as follows:

… halving one in any place is five (in the place) before it, and this necessitates that when
we halve an odd number we make half of the unit five before it and we put over the units’
place a mark by which we distinguish the place. So the value of the unit’s place is tens to
that before it. Now the five may be halved just as whole numbers are halved, and the value
of the units’ place in the second halving becomes hundreds and this may continue
indefinitely.

When al-Uqlīdisī writes of places in a numeral being “before” other places he is
referring to the direction of Arabic writing, which is from right to left. Thus in 175
the 5 would be before the 7. As an example of what he has explained al-Uqlīdisī
gives the results of halving 19 five times as 059375, where, he says, “the place of
the units is hundred-thousands to what is in front of it.” Figure 6 shows the Arabic
text of al-Uqlīdisī’s work and the use of the decimal point in the form of the short
vertical mark pointing out the unit’s place. The decimal mark is clearly visible
above the ‘2’ in the middle of line 10 of the text in Fig. 6 and over the ‘9’ at the left
end of that line. Using the forms of the numerals given earlier, the reader will have
no trouble identifying the various numerals in that figure.

From a purely mathematical point of view it is especially satisfying to see
decimal fractions, complete with decimal point, explained by reasoning by analogy
from established procedures. The usual procedure for halving an even number, such
as 34, was to begin by halving the units, so 34 ! 32. Then, as a writer like
Kushyar would have put it, “The three is tens of the two to the right of it, so its half
is fifteen. We add the five to the two, which is its units, and it becomes seven. So
the result is 17.” The principle used here was that half a unit in one place (tens,
hundreds, etc.) was five in the place to the right. Al-Uqlīdisī observed that the same
principle could be applied to halving a number with an odd digit in the unit’s place,
and out of such a simple observation came a very useful mathematical tool.

A little later, al-Uqlīdisī again uses decimal fractions, this time to increase 135
by its tenth, then the result by its tenth, etc. five times. Thus he sets out as in Fig. 7

to calculate 135 1þ 1
10

� �5
. He writes 135 and below it 135 again, but moved one

place to the right. This will be 1
10

� � � 135, so he adds it to 135. In the sum
135 + 1

10

� � � 135, he marks the unit’s place with a short vertical line above it. When
he has shifted and added four more times, the result will be the desired quantity. (He
mentions that the value of the lowest place is hundred-thousandths.)

He gives an alternative to this method as follows (where we use the decimal
point for al-Uqlīdisī’s vertical line):

135 � 1þ 1
10

� �
¼ ð135 � 11Þ

10
¼ 148:5
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Fig. 7

Fig. 6
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and

148:5 � 1þ 1
10

� �
¼ ð148:5 � 11Þ

10
¼ 148:5

11
10

� �
þ 0:5 � 11

10

� �

¼ 162:8þ 0:55 ¼ 163:35;

which shows that al-Uqlīdisī not only added decimal fractions but multiplied them
by whole numbers as well, even though his method of multiplication unnecessarily
splits the number into its whole and fractional parts.

Less than half a century later another Muslim author, Abū Manṣūr al-Baghdādī,
used decimal fractions—also in a problem on computing tenths. He represented

what al-Uqlīdisī would write as 17
0
28 by 08 02 17, but each pair written above the

previous one, in strict analogy to Kūshyār’s notation for sexagesimal fractions.
Al-Uqlīdisī’s use of decimal fractions is something of an ad hoc device,

unsystematized and unnamed. Two centuries later, however, one finds in the
writings of al-Samaw’al, whose work we discuss in the chapter on algebra, the use
of decimal fractions in the context of division and root extraction. In a treatise of
1172, al-Samaw’al introduces them carefully, as part of a general method of
approximating numbers as closely as one likes. Thus al-Samaw’al uses decimal
fractions within a theory rather than as an ad hoc device, although he still has no
name for them and his notation is inferior to that of al-Uqlīdisī. The reader will find
the details in Rashed.

It is in the early fifteenth century that decimal fractions receive both a name and a
systematic exposition. By then Jamshīd al-Kāshī displays a thorough command of
the arithmetic of decimal fractions, for example, multiplying them just as we do
today. It is also in the fifteenth century that a Byzantine arithmetic textbook describes
as “Turkish” , i.e., from the Islamic world, the method of representing 153 1

2 and 16
1
4

by 153|5 and 16|25 and their product by 2494|375. (See Hunger and Vogel.)
It was not until over a century later that the European writers began using

decimal fractions. An able publicist for the idea was the Flemish engineer Simon
Stevin, whose book The Tenth was published in 1585. However, his awkward
notation was nowhere near so good as al-Uqlīdisī’s, and it was left to the Scot, John
Napier, to reinvent the decimal point and use decimal fractions in his table of
logarithms, another invention of his.

5 Muslim Sexagesimal Arithmetic

5.1 History of Sexagesimals

Although the student may think it strange that it took almost 500 years (from the
tenth to the fifteenth centuries) for decimal fractions to develop, it must be
remembered that Muslim scientists, from the ninth century onwards, already
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possessed a completely satisfactory place-value system to express both whole
numbers and fractions. It was not decimal, however, but the sexagesimal system we
have already referred to, in which the base is 60, and it arose out of the fusion of
two ancient numeration systems.

The first of these is one used by the Babylonians around 2000 B.C in
Mesopotamia. As we know it from the many surviving cuneiform texts, it was a
positional system, in which the successive places of a numeral represent the suc-
cessive powers (positive and negative) of the base, 60, so it treated whole numbers
and fractions in a unified manner. However, the Babylonians did not use single
ciphers for the fifty-nine digits from 1 to 59, but formed them by repeating the
wedges for 1 and 10 . Thus, the Babylonians would represent the integers 3,
25, 133 and 3753 as

In addition, they extended the system to include fractions. Thus since 1
2 ¼ 30

60

they, would write 1
2 as 30 also and since

7
360

¼ 70
3600

¼ 60
3600

þ 10
3600

¼ 1
60

þ 10
602

it would be written as .
There was always a possibility of misunderstanding in using this system, for

there was no special mark to indicate the units (that is, there was no sign like our
decimal point and no custom of writing final zeros in an integer), and therefore, the
magnitude of the number was determined only up to a factor of some power of 60.
Thus, although could represent 1 1

3, it could also represent 80. One step towards
clarification was taken late in the fourth century B.C., at the time when Babylon
was ruled by the successors of Alexander. At that time, scribes in Babylon began to
write numbers more frequently with a special symbol to indicate zeros within the
numeral, so it was possible to write 71 in such a way as to distinguish it unam-
biguously from 3611 (71 being written as and 3611 as ).

These imperfections, however, are relatively minor and seemed not to have
caused much difficulty for the Babylonians. Much more important is the existence,
two millennia before our era, of a numeration system so well suited for complex
calculations that Greek astronomers, at some time during or after the second century
B.C., adopted it for their calculations. Thus, the astronomer Ptolemy used it in the
mid-second century A.D. in his Greek astronomical handbook The Almagest.

The Hellenistic Greeks’ adoption of the system was, however, rather an instance
of grafting than of transplanting; for, while they used it with a different notation to
represent the fractional part of a number, they retained their own method of rep-
resenting the integral part. This method is an example of the second ancient system
we referred to earlier, in which 27 letters of an alphabet are used to represent the
numbers 1,…, 9; 10, 20,…, 90; 100, 200,…, 900. In the case of the Greeks, they
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used 27 letters of an archaic form of the Greek alphabet, according to the scheme
below:

This ancient alphabet stems from that of the Phoenecians, a Semitic people to
whom we owe the inventions of the alphabet and of money. The alphabetic system
of numeration seems to have been common to many of the peoples of the
Mediterranean. Thus, it was used not only by the Greeks and Arabs, but also by the
Hebrews and others.

In this system the numbers up to 999 would be represented by a string of letters,
so that, in the case of the Greeks 48 and 377 would be written MH and TOZ. We
need not go into the special devices that were used to represent numbers larger than
999, for it is the fractions that interest us now. A Greek astronomer, knowing the
Babylonian system, evidently saw the possibility of substituting letters of the
alphabet for the groups of wedges the Babylonians used for digits. Thus 12 1

3 would
be written IB K, to signify (10 + 2) + 20

60.
The Greeks, however, adapted the Babylonian place-value system only for

fractions, so they wrote PMB IB for 142 1
5 rather than the more consistent B KB IB

(i.e. 2 � 60 + 22 + 12
60). The only improvement the Greek system displayed was a

slight cipherization for the digits, so that whereas the Babylonian would have to
write for 1

3, the Greek could simply write K.
The real transplant of the Babylonian system was done by Islamic mathemati-

cians, in a system that was so widely used by astronomers that it simply became
known as “the astronomers’ arithmetic.” In it, the 28 letters of the Arabic alphabet
were used in an order quite different from their order in the alphabet as it was (and
is) written. If we transcribe these letters according to the system in Haywood and
Nahmad then the correspondence between letters of the Arabic alphabet and
numerals is that shown in Fig. 8. (Although the system extends to 1000—for the
28th letter—there is no need for letters beyond the nūn (50) in the astronomers’
arithmetic, since no digit can be greater than 59. The only fact we need to add is
that, as with the Greeks, “zero” was represented by or , which are two versions
of the same cipher.)

48 2 Arithmetic in the Islamic World



Thus, if we represent Arabic letters by the corresponding Latin ones in Fig. 8,
the numeral 84 would be written a kd (i.e., 1 � 60 + 24), and lb n would represent
32 50

60. These two examples illustrate how the Muslims made a consistent adaptation
of the Babylonian system to their own mode of writing, in the process of which they
introduced a significant amount of cipherization. Of course, there remained the
ambiguity of the value of any given numeral. Although b mh could represent 165
(=2 � 60 + 45), it could equally well represent 2 45

60, and, in the absence of a
sexagesimal point, some other device was necessary to eliminate this ambiguity.

There were two solutions to this problem. The one was to name each place, so
that the nonnegative powers of 60 (1, 60, 602,…) were called “degrees,” “first
elevates,” “second elevates,”…, while the negative powers of 60 (1/60, 1/602,
1/603,…) were called “minutes,” “seconds,” “thirds,”…. The origin of the name
“degrees” is in astronomy, where the term referred to the 360 equal parts into which
the zodiac circle is divided. The term “minutes” is a translation of the daqā’iq,
which means “fine,” just as the English word “minute” does. The succeeding fine

Fig. 8
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parts were, naturally, “the second, third, etc. fine parts.” The other solution was to
name the last place only, so that “b mh minutes” would make it clear that the value
2 45
60 was intended.
In the following survey of Muslim sexagesimal arithmetic we shall follow the

second section of Kūshyār’s Principles of Hindu Reckoning, and it is typical of the
variety of approaches used by Muslim scientists that, although Kūshyār explains a
consistent sexagesimal arithmetic, he does not use letters of the alphabet at all, but
rather the form of the Hindu ciphers used in the Eastern caliphate. Thus, what some
writers would express as ka h mb, Kūshyār writes as in Fig. 9, where the places of
the numeral are written vertically in order to prevent confusion with the Hindu
numeral 210,542. However, here as earlier he uses the ciphers only when he is
actually showing the work. Elsewhere he writes out all the numerals longhand, and,
to give some of the flavor of the work, we shall follow the same practice.

5.2 Sexagesimal Addition and Subtraction

To illustrate addition, Kūshyār gives the following example: “We wish to add
twenty-five degrees, thirty-three minutes and twenty-four seconds to forty-eight
degrees, thirty-five minutes and fifteen seconds.” He sets these two numbers down
in two columns, separated by an empty column, with degrees facing degrees,
minutes facing minutes, and seconds facing seconds (Fig. 10). He then adds
twenty-five to forty-eight, tens to tens, and units to units, and then he adds
thirty-three to thirty-five and twenty-four to fifteen. Whenever a sum exceeds sixty
he subtracts sixty from it, enters the result, and adds one to the place above it. This
is the reason for the upper “one” shown in the second figure. The dust board where
Kūshyār imagined these calculations being carried out would show the successive
parts of Fig. 10, with only the last set of figures showing at the end.

Subtraction, too, is straightforward, and it proceeds from the highest place
downwards, with borrowing when necessary. Figure 11 shows the process of
subtracting rather than adding in the above example, and it clearly offers no serious
difficulties.

Fig. 9
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5.3 Sexagesimal Multiplication

5.3.1 Multiplication by Leveling

Multiplication and division were, however, another matter. Even such able math-
ematicians as al-Bīrūnī found it most convenient to convert the sexagesimal
numerals to decimal form, perform the computations on the decimal forms by the
rules of Hindu arithmetic, and then convert the answer back to sexagesimals, and
the procedure was so common it was given a special name, “leveling”.
A contemporary of al-Bīrūnī, al-Nasawī, solves the problem of multiplying the two
sexagesimal numbers 4°15′20′′ and 6°20′13′′ in the following way. First, he
expresses both factors in terms of their lowest orders, Thus:

4�150 ¼ ð4 � 60Þ0 þ 150 ¼ 2550; and 25502000 ¼ ð255 � 60Þ00 þ 2000 ¼ 15; 32000:

Similarly, he calculates the other factor to be 22,813.′′ Since the books that
discuss this method explain how to calculate the products of various orders,
al-Nasawī knows that the product of “seconds” by “seconds” will be on the order of
“fourths” and, calculating in pure decimal numbers, he finds the product to be
349,495,160 fourths. Now it is necessary to perform the inverse operation of
leveling, namely to “raise” this number to a sexagesimal expression, by dividing by
60. (We saw an example of this at the end of the treatment of division in the section
on decimal arithmetic.) Thus, in this case,

349; 495; 1600000 ¼ ð5; 824; 919 � 60þ 20Þ0000 ¼ 5; 824; 9190000 þ 200000:

Finally, proceeding as above, but now with the thirds, then the seconds, and
finally the minutes, al-Nasawī obtains the answer 26°58′1′′59′′′20′′′′.

Fig. 10

Fig. 11
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The foregoing, inelegant procedure was widespread but by no means universal.
Kūshyār, although he mentions it in his treatise as one method, explains how to
multiply two sexagesimal numbers without any such conversion.

5.3.2 Multiplication Tables

At the beginning of his section on sexagesimal arithmetic, Kūshyār describes a
sexagesimal multiplication table, which consists of 59 columns, each headed by one
of the integers from 1 to 59, and each containing 60 rows. The column headed with
the integer 39, for example, contains in its rows the multiples of 39, from 1 � 39 to
60 � 39. Although Kūshyār’s book has no such table, examples of these tables have
survived in other treatises (See King and Plate 1.) The rightmost column of each
page in such a table is headed “the number” and contains the alphabetic numerals,
those from 1–30 usually appearing on the right-hand page and those from 31 to 60
on the left. The succeeding columns (going from right to left, as in Arabic writing)
are headed by the alphabetic numerals between 1 and 60. (Of course only a certain
number of them appear on each page, for reasons of space.) Each column gives, as
we mentioned above, the first sixty multiples of the integer that stands at the top,
and in general these multiples will need two sexagesimal digits to express them. For
example, the product of 13 (ig) by 8 (ḥ) would be written with the two-digit
numeral we transliterate as a md. The first twelve rows of the three rightmost
columns in Plate 1, transliterated and then translated, are shown in Fig. 12.
The eighth row below the heading, for example means that 8 13 = 1 44 (104) and
8 14 = 1 52 (112). (We use the convention that n m; r s means n � 60 + m +
r/60 + s/602. Another common convention separates the sexagesimal digits by
commas, as n, m; r, s.)

A remarkable example of a multiplication table was compiled, probably by a
Turkish astronomer, around the year 1600 and gives the first 60 multiples of each
two-place sexagesimal number from 00 01 to 59 59, so one can find directly from
the table such products as 14 34 � 19 = 4 36 46. The table has 212,400 entries and
fills a ninety-page booklet. Other astronomers, doubtless, found it more convenient
to use the more limited tables and compute other products as needed by one of the
algorithms we shall now describe.

The first of these differs only slightly from the method Kūshyār gives for the
multiplication of two decimal numbers. In the sexagesimal case, the numbers are
written vertically rather than horizontally, with an empty column left between them
to contain the product, and Kūshyār’s procedure for the product of 25°42′ by 18°36′
is shown in Fig. 13.
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Plate 1 Part of a sexagesimal multiplication table. The rightmost column is headed “the number”
and shows the alphabetic numerals from 1 to 12. The succeeding columns (from right to left, as in
Arabic handwriting) are headed by the numerals 13, 14, …, 18 and the entries underneath them
give their multiples expressed as two-place sexagesimals. (See Fig. 12 for a transliteration and
translation of the rightmost three columns of this table.) (Photo courtesy of the Egyptian National
Library.)
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5.3.3 Methods of Sexagesimal Multiplication

The first two steps, Kūshyār specifies, are done with the aid of the multiplication
table for 18, and since the 30 in the first step and the 12 arising in the second are of
the same order they must be added in the product, so 30 is replaced by 42.

Since the product of minutes by minutes is seconds, the answer is 7158°1′12′′
(that is, “7 first elevates, 58 degrees, 1 minute and 12 seconds”). In the last two
steps, 36 is one place lower than 18 so its products with 25 and 42 must be added to
the column where the answer is taking shape, but one place lower than the corre-
sponding products for 18.

* An error for NB on the part of the scribe.

Fig. 12

Fig. 13
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A method, that was popular both in Islam and the West for multiplication in a
positional system, is illustrated in Fig. 14 with an example from Jamshīd al-Kāshī’s
Calculators’ Key. The problem is to multiply 13 09 51 20 minutes by 38 40 15 24
thirds, and since the largest number of places is four a square is subdivided to form
a lattice of 16 subsquares, each of which is divided as in Fig. 14 into two equal
triangles. On the edges of the square that intersect at the top corner, the two factors
are written so that the term of lowest order in one factor and that of highest order in
the other factor are put at the top, each term of both factors being labeled by its
orders. Then each square is filled in with the product of the two numbers on the
outer edges opposite its sides, so that when this product has two ciphers the cipher
of the highest order is put on the left of the square. For example, since 38 � 13 = 8
14 the 8 will be put in the left part of the left square and the 14 will be put in the
right. When all 16 products are computed, the answer is obtained by adding up the
ciphers in each of the eight vertical columns of the square, and the sums are written
underneath. Since “minutes times thirds” is on the order of fourths, the lowest order
of the product is fourths.

Although a certain amount of work is necessary to prepare the grid, it is then
easy to fill in the lattice by means of a multiplication table, and the only compu-
tation involved is adding up the entries in the columns. Also, the squares can be
filled in any convenient order, since the lattice-work keeps everything arranged.

The source from which we have taken this method, al-Kāshī’s The Calculators’
Key, gives no proof of the validity of the method; however, the proof is easy when
one notices that what is put in the left-hand side of each square is precisely what
would be carried and added to the next product in the method we are used to. The
lattice does this carrying automatically, but what is carried is added to the product
after all the multiplications have been done, rather than during the process as we are
used to.

Fig. 14 The gelosia method of multiplication as described by al-Kāshī, Used for both decimal and
sexagesimal systems it is shown here in the sexagesimal system. The answer is obtained by adding
the entries in each of the eight columns within the square (base 60)
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5.4 Sexagesimal Division

Finally, the method Kūshyār uses for division in the sexagesimal system parallels
that used in the case of multiplication. Hence, to divide 49°36′ by 12°25′, Kūshyār
arranges three columns and proceeds as in Fig. 15. Here

49� 3 � 12 ¼ 13 and 13 36 - 3 � 25 ¼ 13 36� 1 15 ¼ 12 21

so each digit of the divisor is multiplied by the digit of the quotient (obtained by
trial, as we do), and the result is subtracted from that part of the dividend that is
above it (or level with it) and to the right. Finally, the divisor is shifted down one
place, and this is done so that the next digit of the quotient, when it is placed level
with the highest entry of the divisor, will be of the correct order (in this case
“minutes”). After the third step, the question now becomes “12°25′ times how
many minutes produces something not exceeding 12°21′?”, and the answer is
“59 minutes.” The last two steps of Fig. 15 show the final working-out. Again the
general rule is that the product of a digit of the quotient by a digit of the divisor is
subtracted from all of the dividend to the right and above (or level with) the digit of
the quotient.

Thus Kūshyār gives the result as 3°59′ and says, “If we wish precision we copy
the divisor one place lower.” Hence, the result could be continued to as many
sexagesimal places as necessary. Also, Kūshyār remarks that he has attached to his
book a table giving “the results of the division,” that is, the order that results when a
number of one order (say “first elevates”) is divided by that of another (say
“thirds”). Finally, Kūshyār concludes his chapter with a discussion of how to
calculate square roots in the sexagesimal system, an operation of some importance
to astronomers.

Thus, there was widespread in the Muslim world a consistent system of sexa-
gesimal arithmetic that permitted a unified treatment of both whole numbers and
fractions. This system was supported by special tables, and it provided an approach
to all the operations of arithmetic which was every bit as satisfactory as that of the
(initially) less-developed system of decimal fractions.

Fig. 15
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6 Square Roots

6.1 Introduction

Instead of following Kūshyār’s presentation of the extraction of square roots, we
shall follow that of Jamshīd al-Kāshī in his book The Calculators’ Key, which we
have already referred to as the work he wrote in Samarqand two years before his
death in 1429. It is a compendium of elementary mathematics, including arithmetic,
algebra, and the geometry of measurement, which contains a thorough treatment of
decimal fractions, a table of binomial coefficients, and algorithms for extracting
higher roots of numbers. For example, we shall see later how he works out the fifth
root of a number on the order of trillions, namely 44,240,899,506,197.

The following list of titles of the five main chapters of The Calculators’ Key
shows its differences from the work of Kūshyār: (1) On the arithmetic of whole
numbers. (2) On the arithmetic of fractions (including decimal fractions). (3) On the
arithmetic of astronomers (sexagesimal). (4) On the measurement of plane and solid
figures. (5) On the solution of problems by algebra.

6.2 Obtaining Approximate Square Roots

We shall first see how al-Kāshī extracts the square root of 331,781. His method for
the square root is the same as Kūshyār’s, but, unlike Kūshyār, al-Kāshī was writing
for people who would use pen and paper. (It was in Samarqand where the Arabs first
learned of papermaking from Chinese prisoners of war near the end of the eighth
century and, because of its abundant supply of fresh water, Samarqand remained a
center of paper manufacturing for several centuries.) Thus, in the method as al-Kāshī
explains it, none of the intermediate steps are erased. Al-Kāshī organizes his work by
dividing the digits of the radicand, 331,781, into groups of two called “cycles,”
starting from the right. (Thus 331,781 is divided as 33 17 81.) As al-Kāshī explains
it, since the numbers 1, 100, 10,000 … have integer square roots (unlike 10, 1000,
…), the cycles are relevant, for the first (81) counts the number of units, the second
(17) the number of hundreds, the third (33) the number of 10,000’s, etc. He then
draws a line across the top of the radicand and lines down the paper separating the
cycles. At the beginning, therefore, his paper looks like Fig. 16a.

To get the first of the three digits of his root he finds the largest digit n so that n2

does not exceed 33. Since 52 = 25 and 62 = 36 he takes n = 5, which is written
both above and some distance below the 33 (below the last 3) to obtain Fig. 16b.

Now he subtracts 25 from 33 to obtain 8, which he writes below 33, and draws a
line under 33 to show he is done with it. (On the dust board the 33 would be erased
and the 8 would replace it.) Now he doubles the part of the root he has obtained, 5,
and writes the result (10) above the bottom 5, but shifted one place to the right to
obtain Fig. 16c. (The dust board would only show the top 5, the middle 8 17 81,

6 Square Roots 57



and the bottom 10 of Fig. 16c.) At this stage al-Kāshī has a current answer (5) at the
top and double the current answer (10) at the bottom.

What al-Kāshī next asks is to find the largest digit x so that (100 + x) � x � 817.
Experiment shows x = 7, and he writes 7 above the 7 of 17, and next to the 10 on
the bottom, and then he performs the computation of (100 + 7) � 7 = 749 and
subtracts the result from 817 to get Fig. 17a. He now begins the process again,
doubling the last digit in 107 to get 114 and writing this above the 107, but shifted
one place to the right, as shown in Fig. 17b. Once again he has the current answer
(57) at the top and double that (114) at the bottom, and as before the question is
this: What is the largest digit x so that (1140 + x) � x � 6881? A trial division of

Fig. 16

Fig. 17
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688 by 114 suggests trying x = 6. This works, and after 1146 � 6 has been sub-
tracted from 6881, the last digit of 1146 is doubled to make the 1146 into 1152
(=1146 + 6) as in Fig. 17c. (The dust board would show the top 576, the middle 5
and the bottom 1152.)

Thus al-Kāshī has obtained an approximate square root (576) as the current
answer and double that (1152) at the bottom. Finally, he increases 1152 by 1 to get
1153 and divides it into the remainder, the middle 5, to obtain, as the approximate
square root of 331,781, the number 576 5

1153 (=576.00434). Calculation shows the
square of the latter number is 331,780.996, so al-Kāshī’s result is quite close.

6.3 Justifying the Approximation

Two questions arise: (1) What is the justification for al-Kāshī’s procedure for
obtaining the integral part of the root; and (2) What is the justification for the
fractional part? We will begin with the second question.

6.3.1 Justifying the Fractional Part

In fact, the numerator of the fractional part, 5, is equal to 331,781 − (576)2, and the
denominator, 1153, is 5772 − 5762. This is because 1153 is one more than “twice
the current answer”, i.e.

1153� 1þ 2 � 576 ¼ ð1þ 576Þ2 � 5762 :

Thus the fractional part of the answer, 5
1153, is just that obtained by linear

interpolation, i.e., (331,781 − 5762)/(5772 − 5762), a technique that was ancient
when Ptolemy used it in his Almagest in the first half of the second century A.D.

To understand this technique as a medieval astronomer might have justified it,
imagine a table of square roots obtained by listing in one column the successive
squares from 12 to 1,0002, and, next to these in a second column, the first thousand
whole numbers, as in Fig. 18.

Fig. 18
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Then, to find
ffiffiffi
6

p
, the simplest procedure would be to observe that 4 < 6 < 9

implies 2;\
ffiffiffi
6

p
\3. Moreover, since 6 − 4 = 2 and 9 − 4 = 5, 6 is 2

5 of the way

between 9 and 4. Thus
ffiffiffi
6

p
is about 25 of the way between

ffiffiffi
4

p ¼ 2 and
ffiffiffi
9

p ¼ 2, i.e.,
ffiffiffi
6

p ¼ 2 2
5, approximately.

The reader will recognize that this reasoning is based on the assumption that
ffiffiffi
x

p
is proportional to x, which is the same as the assumption that, if we may express
ourselves in modern language, the function f ðxÞ ¼ ffiffiffi

x
p

is linear, i.e. its graph is a
straight line. Although this is not true a glance at the graph of f(x) in Fig. 19 reveals
that it is nearly linear for x > 1 and over not too big an interval [a, b]. Thus, for
example, the straight line joining the two points (16, 4) and (25, 5) is hardly
distinguishable from the graph between these two points, and this is why the
technique gives such a good approximation to the fractional part of

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
331; 781

p
. The

table shows 5762 = 331,776 < 331,781 < 332,929 = 5772 and, since
331,781 − 5762 = 5 while 5772 − 5762 = 1153 we conclude that since
N = 331,781 is 5

1153 of the way between 5762 and 5772 its square root is about 5
1153

of the way between 576 and 577. Thus
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
331; 781

p ¼ 576 5
1153.

Linear interpolation was one of the standard ancient and medieval methods of
what has been called “reading between the lines” (of tables), but we emphasize that
the name “linear interpolation” reflects modern ideas, and those who discovered this
method of approximation had no conception of a straight line as the graph of an
equation. The ancient and medieval concept was simply that in a table of values
pairing x to y one assumed that the change from y to y′ was distributed equally over
the units from x to x′.

6.3.2 Justifying the Integral Part

As for the extraction of the integral part of
ffiffiffiffi
N

p
, al-Kāshī knows that if N = abcdef

then the largest integer r with the property that r2 � N has half as many digits as N,

Fig. 19
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in this case 3. (By taking a = 0 if necessary we may assume that N has an even
number of digits.) Therefore he divides N into what he calls cycles, as N = ab cd ef
and thereby considers N = ab � 1002 + cd � 102 + ef.

Now, al-Kāshī’s first step is to find the largest number A so that A2 � ab. A will
be a one-digit number, since ab has two digits and 102 has three digits. Such an
A will be the first digit of the root, as the reader may verify.

His next step is to calculate the difference

D1 ¼ N�ðA � 100Þ2 ¼ ðab� A2Þ � 1002 þ cd � 102 þ ef

and then to find the next place, i.e., the largest B so that

D2 ¼ N � ðA � 100þB � 10Þ2 � 0

He uses the basic identity (X + Y)2 = X2 + (2X + Y)Y to expand

D2 as N � ðA � 100Þ2 � (2A � 100þB � 10ÞB � 10 ¼ D1 � ð2A � 10þBÞB � 100;

and the expression 2A � 10 + B is the formal equivalent of al-Kāshī’s instruction to
double A, the previous digit of the root, and then put the digit (B) next to it. As
al-Kāshī says, this next digit is chosen to be the largest, so that the product
(2A � 10 + B)B � 100 does not exceed the previous difference Δ1. The multiplication
of 2A by 1000 instead of by 10,000 is reflected in its shift one place to the right. Of
course, al-Kāshī never mentions the powers of 10 since they are automatically taken
into account by the positioning.

The procedure should by now be clear. When we have determined B to be as
large as possible so that (A � 100 + B � 10)2 � N we choose C to be as large as
possible so that 0 � N − (A � 100 + B � 10 + C)2, and where, with
X = (A � 100 + B � 10) and Y = C, (X + Y)2 is again expanded according to the rule
(X + Y)2 = X2 + (2X + Y)Y. This identity, or its alternate form (X + Y)2 −
X2 = (2X + Y)Y is the basis for the algorithm for the extraction of the square root.
Al-Kāshī’s procedure also takes advantage of the fact that in evaluating
N − (X + Y)2 the part N − X2 has been evaluated at the previous step.

7 Al-Kāshī’s Extraction of a Fifth Root

7.1 Introduction

We now follow the beginning of al-Kāshī’s extraction of the fifth root of
44,240,899,506,197—a number on the order of trillions. The extraction of higher
roots of numbers was, according to the testimony of ‛Umar Khayyām, an
achievement of Muslim scholars, for he wrote in his Algebra,
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From the Indians one has methods for obtaining square and cube roots, methods which are
based on knowledge of individual cases, namely the knowledge of the squares of the nine
digits 12, 22, 32 (etc.) and their respective products, i.e. 2 � 3 etc. We have written a treatise
on the proof of the validity of those methods and that they satisfy the conditions. In addition
we have increased their types, namely in the form of the determination of the fourth, fifth,
sixth roots up to any desired degree. No one preceded us in this and those proofs are purely
arithmetic, founded on the arithmetic of The Elements.

‘Umar was neither the first mathematician nor the last who believed falsely
that he was the originator of a method. In this case, we know that Abū al-Wafā’,
who flourished over 100 years before ‛Umar, in the late tenth century, wrote a work
entitled On Obtaining Cube and Fourth Roots and Roots Composed of These Two.
Of course, ‛Umar may not have known of Abū al-Wafā’s treatise, or it may be that

Abū a1-Wafā’ simply pointed out that
ffiffiffiffi
N4

p ¼ ð
ffiffiffiffiffiffiffiffiffiffiffiffi
N

pp
Þ and, since ffiffiffiffi

N3
p

was already

known from the Indians, roots such as the twelfth, for example,
ffiffiffiffi
N12

p ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
N3

p
4
p

could
be calculated by known methods. Thus Abū al-Wafā”s work may have been less
innovative than that of ‛Umar.

7.2 Laying Out the Work

However that may be, neither ‛Umar’s treatise nor that of Abū a1-Wafā’ is extant, so
we shall study al-Kāshī’s method from Book III of his Calculators’ Key. He begins
by instructing the reader to write the number across the top of the page and to divide
the number into cycles, which are, this time, successive groups of five digits
beginning from the right. This is because the powers of 10 with perfect fifth roots are
1, 105, 1010, etc. Next, al-Kāshī puts between the cycles, double lines and between
the individual digits single lines, all running down the length of the page, and then he
puts a line above the number, on which he will enter the digits of the root.

Next, he divides the space below the number into five broad bands by means of
horizontal lines. The top band contains the number, and the words “Row of the
number” are written on the edge of this band. The band below it is called “Row of
the square square” (the fourth power) number.” When this process is finished, the
sheet will look as in Fig. 20, and everything is ready. It seems not too far from the
algorithmic spirit of this procedure to look on the cells in Fig. 20 as locations in a
computer’s memory, and in keeping with this Fig. 21 shows a flow-chart for the
root extraction which the reader may find useful to get an overview of the process.

7.3 The Procedure for the First Two Digits

Al-Kāshī’ now proceeds as follows (Fig. 22). The largest integer, a, whose fifth
power does not exceed 4424 is 5, so he puts 5 in “Row of Result” (above the first
cycle) and at the bottom of “Row of Root.” Next, he puts 52 (25) at the bottom of
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“Row of Square,” 53 (125) at the bottom of “Row of Cube,” and 54 (625) at the
bottom of the “Row of the Square Square”. Finally, 4424 − 55 = 1299 is placed in
the “Row of Number” (This number, in virtue of its position, represents 1299 1010.)

Next he begins the process called “once up to the row of the square square,” by
adding the latest entry in “Row of Root” (5) to the most recently obtained digit of
the root (5) and writing the sum (10) in “Row of Root” above 5. Now, he multiplies
the sum by 5 and puts the product, 10 � 5, above 52 in “Row of Square” and then
adds the two to get 75 = 52 + 50. The sum he multiplies by 5 and puts the product
(75�5) above 53 in “Row of Cube.” Again, he adds these to get 500 = 53 + 75 � 5.
Then he multiplies the sum by 5 and puts 500 � 5 above 54 in “Row of Square
Square.” Finally, he adds these to get 3125 = 54 + 500 � 5. (The lines within the
bands mean, in the case of the bottom four bands, that all numbers below them
would be erased on a dust board, and, in the case of the top band, the numbers
above would be erased.)

Now, beginning with the 10 in “Row of Root,” he repeats the above as far as
“Row of Cube” (10 + 5 = 15, etc.), then, with 15, to “Row of Square”
(15 + 5 = 20, etc.) and finally 20 + 5 = 25 is put in “Row of Root.”

Thus the numbers lying entirely in the first column are obtained. Now 3125 (in
“Row of Square Square”) is shifted one place right, 1250 (in “Row of Cube”) two
places, 250 (in “Row of Square”) three places, and finally 25 (in “Row of Root”)
four places to the right, and he puts this “25” at the bottom of the next column
(below the cycle 08995), as in Fig. 22.

At this point he seeks b, the largest single digit so that f(b) � 129,908,995 = D,
where

f ðbÞ ¼ bðððb � 25bþ 250 � 102Þb þ 1250 � 103Þbþ 3125 � 104Þ

where “25b” means 250+b.
It turns out that f(4) = 146,665,024 is too big, and since

f(3) = 105,695,493 < D), al-Kāshī concludes that 3 is the desired value for b. (This
method of evaluating a polynomial is standard in numerical analysis and is called
Horner’s method in many texts on the subject.)

Fig. 20
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N Y

Start

Ri, Ci, i, Xi

DO J = 1 TO 4

RJ = RJ + XI · RJ-1

DO J = 1 TO 4

R5–J = R5–J – XI · R4–J

XI = XI – 1

R5 = R5 – XI · R4

DO K = 1 TO 4

DO J = 1 TO 5 – K

RJ = RJ + XI ·  RJ–1

DO J = 1 TO 5

I = I –1

I = 0

D = 1+R1+R2+R3+R4

STOP

RJ = RJ · 10J

R5 = R5 + CI

PRINT X1, ... , Xr
PRINT R5/D

XI = [R5/R4]

XI · R4 ≤ R5
N Y

Fig. 21

64 2 Arithmetic in the Islamic World



7.4 Justification for the Procedure

The reader may easily verify with a pocket calculator that 5305 < N, while
5405 > N, and thus al-Kāshī has found the next digit of the fifth root. The question
is: “How?,” and the answer lies in the analog of the identity that underlies
extraction of square roots. If C(n, k) denotes the binomial coefficient “n choose k,”

Fig. 22
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which counts the number of ways of choosing k objects from a set of n objects, then
the binomial theorem applied to squares may be written

AþBð Þ2�A2 ¼ ðC 2; 2ð ÞBþC 2; 1ð ÞAÞB

and, applied to higher powers, yields the identities:

AþBð Þ3�A3 ¼ ððC 3; 3ð ÞBþC 3; 2ð ÞAÞBþC 3; 1ð ÞA2ÞB;
AþBð Þ4�A4 ¼ ðððC 4; 4ð ÞBþC 4; 3ð ÞAÞBþC 4; 2ð ÞA2ÞB

þC 4; 1ð ÞA3ÞB;
AþBð Þ5�A5 ¼ ððððC 5; 5ð ÞBþC 5; 4ð ÞAÞBþC 5; 3ð ÞA2ÞB

þC 5; 2ð ÞA3ÞBþC 5; 1ð ÞA4ÞB:

The numbers C(n, k) are arranged in a triangular array in Fig. 23. Notice that
each row of this triangle begins and ends with a I and that a number greater than 1
in any row is just the sum of the two numbers to the right and left of it in the row
above it. (Thus in the fourth row the “3” is the sum of 1 and 2 in the row above it.)
If we begin numbering the rows with 0 and use the convention C(0, 0) = 1, then for
all 0 � k � n, C(n, k) is the kth entry in Row n, and the rule for generating the
triangle corresponds to the fundamental relationship

Cðn; kÞ ¼ n� 1; kð ÞþC n� 1; k � 1ð Þ

This triangle is called “Pascal’s Triangle,” after the French mathematician of the
early seventeenth century, Blaise Pascal, whose Traité du Triangle Arithmétique,
published in 1665, drew the attention of mathematicians to its properties. However,
it might with more justice be called al-Karajī’s triangle, for it was al-Karajī who,
around the year A.D. 1000, drew the attention of mathematicians in the Islamic
world to the remarkable properties of the triangular array of numbers.

If we substitute the values of C(5, k) into the expression for (A + B)5 − A5 we
obtain the equality

AþBð Þ5�A5 ¼ ððððBþ 5AÞBþ 10A2ÞBþ 10A3ÞBþ 5A4ÞB:

Fig. 23
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In the present case, A = 5 � 102 and B = b � 10, and if we substitute these values
for A and B the right-hand side of the expression now becomes

105ððððbþ 25 � 10Þb þ 250 � 102Þbþ 1250 � 103Þbþ 3125 � 104Þb;

and the numbers in boldface are those appearing in the function f given earlier.
To see how al-Kāshī’s technique generates the binomial coefficients, begin with

a page divided into four horizontal bands, and, instead of writing the entries within
a band one above the other, write them in a row, towards the right. Now, fill in the
page as follows:

1. Put the first four powers of 1 up the leftmost column, one in each band.
2. If any column has been filled in, start the next at the bottom by adding 1 to the

entry to the left of it.
3. If any column has been filled in up to a given row, fill in the next row of that

column by adding 1 times the entry in the given row to that in the previous
column of the next row.

4. Each column after the second contains one less row than the column to its left.

These rules will generate Fig. 24 in which the columns are just the diagonals
descending to the right in Pascal’s triangle, apart from the initial “1”s in these diagonals.

Of course, al-Kāshī wants not just the binomial coefficients C(5, k), but the
values 5C(5, 4) = 25, 52C(5, 3) = 250, 53C(5, 2) = 1250, and 54C(5, 1) = 3125.
Thus, we construct a figure, on the model of Fig. 24, but this time:

1. Put ascending powers of 5 up the first column.
2. Add 5 instead of 1 as we move across the bottom row.
3. Whenever we move a number up to add it, first multiply it by 5.

Then we obtain Fig. 25 in which the last entries of the rows are the coefficients
given in boldface in the expansion of f earlier.

One point remains, however. The numbers al-Kāshī must calculate with are not
quite the above but 25 � 106, 250 � 107, 1250 � 108, and 3125 � 109. To represent
these numbers on the array, al-Kāshī must move the 25 to the right four spaces, the

Fig. 24

Fig. 25
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250 three spaces, the 1250 two, and the 3125 one. This is because, where they are,
they are being treated as if they were multiplied by 1010, while, in f(b), 25 is
multiplied only by 106. Since 10 − 6 = 4, al-Kāshī must shift the 25 four places to
the right to make it represent 25 � 106, etc. This is sufficient explanation of why,
after al-Kāshī has found b according to the procedure outlined and has subtracted
f(b) from D, there remains D′ = N − (A + B)5.

7.5 The Remaining Procedure

Figure 26 shows the next part of the algorithm after 3 has been placed both in “Row
of Result” and next to 25 in “Row of Root” (to form the number 253). The numbers
in the parentheses on the right show how the algorithm calculates f(b) in stages.
Thus, 253 is multiplied by 3 to obtain 759, which is then put directly above the
25000 (the last two zeros not being shown) and added to it to obtain 25,759. This is
then multiplied by 3, written above the 1,250,000, and added to obtain 1,327,277.
Finally, this is multiplied by 3 and the product added to the 31,250,000 in the row
above it. This sum is finally multiplied by three and the product, which is f(3),
is subtracted from 129,908,995 in the “Row of the number.” The difference, D′, is
D − f(3).

Next, al-Kāshī begins the process “once up to the row of the square square”
(with 253 + 3 = 256, etc.), then to the row of the cube (with 256 + 3 = 259), then
to the row of the square (259 + 3 = 262). Finally, in the row of the number he puts
265 = 262 + 3. The multiplications of course are all by 3 instead of by 5. The top
numbers in the bands are then shifted so the numbers obtained will represent the
constants in the polynomial:

gðcÞ ¼ ðððc � 265cþ 28; 090 � 102Þcþ 1; 488; 770 � 103Þcþ 39; 452; 405 � 104Þc;

The next digit, c, must satisfy a condition entirely analogous to the one b satisfied,
i.e., it must be the largest single digit so that g(c) does not exceed 24,213,502 � 105.
Al-Kāshī finds c = 6.

The bracketed lines in Fig. 27 denote the computation of the terms of g(6), and
D″ the final difference. Finally, al-Kāshī performs the procedure of going up to the
“Row of Square Square,” etc. The reader should now be able to follow without
difficulty the steps as shown in Fig. 27.

7.6 The Fractional Part of the Root

At this point al-Kāshī has finished the calculation of the integer part of the fifth root
of the given 14-place number. He had perfect control of decimal fractions and there
is no doubt he knew that he could now shift again and continues the procedure to
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extract successive decimal places of the fifth root. Also, al-Khwārizmī, in a part of
his treatise on arithmetic reported by the Latin writer John of Seville (fl. ca. 1140),
gives an example of calculating

ffiffiffi
2

p
by calculating:

Fig. 26
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ffiffiffi
2

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2; 000; 000

p
1000

¼: 1414
1000

a procedure which al-Kāshī also recommends. So, even without decimal fractions,
one can obtain any desired degree of accuracy.

What al-Kāshī does here, however, is to add up the top numbers in each of the
four bottom rows and increase the sum by one, i.e., he forms

Fig. 27
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412694958080

1539906560

2872960

2680

þ 1
414237740281

and states that the fifth root of the given number is 536 + 21/414,237,740,281.
Al-Kāshī’s rule for finding the fractional part is based on the approximation

nk þ r
� �1=k¼ nþ r

nþ 1ð Þk�nk

where he explicitly calculates

nþ rð Þk�nk ¼ C n; 1ð Þnk�1 þC n; 2ð Þnk�2 þ . . .þ 1:

This is, of course, just the method of linear interpolation we discussed earlier, for
nk + r is r units of the total (n + l)k − nk units between two successive kth powers, so
linear interpolation would place its kth root, (nk + r)1/k, the fraction r/[(n +l)k − nk] of
the way between the two kth roots n and n + l.

Figure 28 reproduces a page from the printed version of al-Kāshī’s The
Calculators’ Key, which shows the entire calculation we have just explained. The
reader will benefit from identifying the numerals and following the procedure
through the first “Once up to the row of square square.”

8 The Islamic Dimension: Problems of Inheritance

Al-Khwārizmī devotes the first half of his book on algebra to solutions of the
various types of equations and demonstrations of the validity of his methods, but
the latter half contains examples of how the sciences of arithmetic and algebra could
be applied to the problems posed by the requirements of the Muslim laws of
inheritance.

When a person dies who leaves no legacy to a stranger the calculation of the
legal shares of the natural heirs could be solved by the arithmetic of fractions. The
calculation of these shares was known as ‘ilm al-farā’iḍ, and two examples from
al-Khwārizmī’s work illustrate the applications of arithmetic here.
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Fig. 28
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8.1 The First Problem of Inheritance

This problem is a simple one, namely,

Example 1 “A woman dies, leaving her husband, a son and three daughters,” and
the object is to calculate the fraction of her estate that each heir will receive.

The law in this case is that the husband receives 1
4 of the estate and that a son

receives twice as much as a daughter. (It should be said, however, that from the
woman’s point of view Islamic inheritance law was a considerable improvement
over what the pre-Islamic requirements in the Arabian Peninsula had been.)

Al-Khwārizmī then divides the remainder of the estate after the husband’s share
has been deducted, namely 3

4, into five parts, two for the son and three for the
daughters. Since the least common multiple of five and four is twenty, the estate
should be divided into twenty equal parts. Of these, the husband gets five, the son
six, and each daughter three.

8.2 The Second Problem of Inheritance

This problem is a little more complicated and illustrates how unit fractions were
employed to describe more complex fractions.

Example 2 A woman dies, leaving her husband, son and three daughters, but she
also bequeaths to a stranger 1

8 þ 1
7 of her estate. Calculate the shares of each.

One law on legacies is that a legacy cannot exceed 1
3 of the estate unless the

natural heirs agree to it. (Here complications could enter because of the provision
that if some agree and some do not agree those who do agree must pay, pro-rated,
their share of the excess of the legacy over the third.) In the present case, however,
since 1

8 þ 1
7 � 1

3 no complications enter, and the second provision on legacies,
namely that a legacy must be paid before the other shares are calculated, now takes
effect.

As in the above problem, the common denominator of the legal shares of her
relatives is 20. Also, the fraction of the estate remaining after the stranger’s legacy
1
8 þ 1

7 ¼ 15
56

� �
has been paid is 41

56 Then the ratio of the stranger’s share to the total
shares of the family is 15

56

� �
: 41

56

� � ¼ 15 : 41. Thus, of the whole estate, the stranger
will receive 15 parts to the 41 parts the natural heirs will receive. Multiplying both
numbers by 20 to facilitate the computation of the shares of the heirs, we find that of
a total of 20 (15 + 41) = 20 � 56 = 1120 parts the stranger receives 20 � 15 = 300
and the heirs jointly receive 20 � 41 = 820. Of these parts, the husband receives 1

4,
namely 205, the son 6

20 namely 246, and each of the daughters gets 123.
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8.3 On the Calculation of Zakāt

Another example of the use of arithmetic in the Islamic faith is in the calculation of
zakāt, the community’s share of private wealth. This is payable each year, at a
certain rate, and the following problem, taken from The Supplement of Arithmetic of
the eleventh-century mathematician, Abū Manṣūr al-Baghdādī, follows the gradual
diminution of a sum of money as the zakāt is paid for 3 years. Its treatment of the
fractional parts of a dirhām reminds one of Kūshyār’s treatment of fractions, and in
presenting it we paraphrase slightly, following the translation in Saidan (1987) “We
want to pay the zakāt on 7586 dirhāms, the amount that Muḥammad ibn Mūsā
al-Khwārizmī mentioned in his work.” (The dirhām was divided into sixty fulūs,
the plural of fils (see Plate 2).)

The rate of zakāt is 1 dirhām in 40, but al-Baghdādī does not divide 7586 by 40
according to the algorithm Kūshyār describes. Rather he calculates the total due on
7586 dirhāms, place-by-place, as follows:

From the first place we remove 1, which we make 40, and then remove 6 from
the 40. This 6 is the zakāt due on 6 dirhāms and it is 6 parts of (the 40 into which
we have divided) a dirhām. Thus, of the 40 there remains 34 parts. This we put
under the five that has remained in the units place, as in Fig. 29a.

We must now calculate 1
40 of the 80 that arises from the 10’s place, to obtain 2,

which we subtract from the five in the unit’s place. This leaves what is shown in
Fig. 29b.

In the 100’s place there is 500, on which the zakāt due is 12 1
2. Of the 40 parts

into which we have divided the dirhām, 1
2 is 20, so when we subtract this from 34

there remain 14 parts. Also 12 from 83 leaves 71, so there now remain the figures
shown in Fig. 29c.

Finally, 1
40 of the 7000 we obtain from the 1000’s place is 175, and when we

subtract this from 571 there remains 396, so the answer is that shown in Fig. 29d.
Al-Baghdādī follows this for two more years, after which there remain the

number of dirhāms shown in Fig. 29e, where, e.g. the 14 means 14/(40)3 dirhāms.
(The tax collector is going to get every last fils due!)

Of course, dirhāms are divided into 60 fulūs, not 40, and so, to calculate the
zakāt, the base-40 fractions, which were convenient to use in the intial stage, must
now be converted into sexagesimal fractions, and here al-Baghdādī points out a slip
on the part of al-Khwārizmī, his source for the problem. Evidently, al-Khwārizmī
said that if each of the fractional parts (i.e., 6, 8 and 14) is increased by 1

2 then they
become sexagesimal parts, i.e., minutes, seconds and thirds. This is of course true
for the 6, because

6
40

¼ 6 �
3
2

40 � 32
¼ 9

60

but it is false for the following parts, and al-Baghdādī gives the correct rule.
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Plate 2 Obverse and reverse of two coins from the medieval Islamic world. The one on the right
is a fils of Damascus, minted in 87 A.H. (Anno Hijra). The obverse of the coin on the right names
the Caliph al-Walīd (of the Umayyad Dynasty) and gives the shahāda (Muslim confession of faith:
“There is no god but Allah and Muḥammad is the Messenger of Allāh.”) The one on the left is a
dirham of Medīnat al-Salām (Baghdad) issued in 334 A.H. and names, on the two faces of the
coin, the Būyid rulers Mu‘izz al-Dawla and ‘Imād al-Dawla as well as the Caliph al-Muṭī‛. (Photo
courtesy of the American Numismatic Society, New York.)

Fig. 29
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Without question, ‛ilm al-farā’iḍ is an important subject for Muslims, but in
estimating the place of mathematics in that discipline a cautionary note, written by
the great fourteenth century Maghribi historian, Ibn Khaldūn, is worth recording.

Religious scholars in the Muslim cities have paid much attention to it. Some authors are
inclined to exaggerate the mathematical side of the discipline and to pose problems
requiring for their solution various branches of arithmetic, such as algebra, the use of roots,
and similar things. It is of no practical use in inheritance matters because it deals with
unusual and rare cases. (Transl. in Rosenthal, cited in bibliography of Chap. 1.)

Exercises

1. Use Kūshyār’s method to add and subtract 12,431 and 987, showing your steps
as in the text.

2. Develop an algorithm for halving a number that starts with the highest place in
a number. Why do you think the Muslim calculators worked from the lowest
place?

3. Use an operation modeled on raising to obtain a decimal expansion of 243
7 .

4. Use Kūshyār’s method to multiply 46 by 243.
5. Use Kūshyār’s method of division to divide 243 by 7, and then use the method

of raising to find a 3-place sexagesimal approximation to 5
7.

6. Adapt the method of raising to find a 3-place decimal approximation to 5
7.

7. Devise a method for converting decimal integers to sexagesimal integers. Do
the same for fractions. Now do the latter, but going from sexagesimal to
decimal.

8. List some possible values for ke mb h, including some fractional ones.
9. Add, subtract and multiply the two sexagesimal numbers 36, 24 and 15, 45.

Divide 2, 6, 15, 0 by 8, 20.
10. Use the lattice method to multiply 2468 by 9753.
11. Use the procedure in Sect. 3 to express 19/35 as a related fraction.
12. With A and N as in the section on square roots show that ((A + 1) � 100)2 > N,

while (A � 100)2 < N. Conclude that A is the first digit of the root.
13. Use al-Kāshī’s method, including linear interpolation, to find

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
20; 000

p
.

14. If a man dies, leaving no children, then his mother receives 1
6 and his widow

1
4 of

the estate. If he has any brothers or sisters, a brother’s share is twice that of a
sister. Find the fractions of the estate due if a man dies, leaving no children but
a wife, a mother, a brother, two sisters, and a legacy of 1

9 of the estate to a
stranger.

15. Give a rule for converting the remaining base-40 parts in the example from
al-Baghdādī to sexagesimal parts. Generalize this rule to one for converting
fractions from base n to base m.
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16. Show that for any single digit b

f ðbÞ ¼ ð5 � 102 þ b � 10Þ5 � ð5� 102Þ5

and conclude that b is the desired second digit of the fifth root, where f is the
function in our discussion of al-Kāshī’s extraction of the fifth root.

17. Al-Kāshī’s method of evaluating f(b) suggests evaluating an arbitrary
polynomial

gðxÞ ¼ anx
n þ an�1x

n�1 þ � � � þ a1xþ a0

as

gðxÞ ¼ ð. . .ðanxþ an�1Þxþ an�2Þxþ � � � þ a1Þxþ a0;

where the initial dots denote an appropriate number of parentheses and those in
the middle denote intermediate terms.

(a) Evaluate g(2), where g(x) = 5x3 − 3x2 + 7x + 6 by this method.
(b) If addition and multiplication are each counted as one operation how many

operations are necessary to evaluate g(x) by this formula? How many are
necessary according to the usual method?

18. Show that the sum 412,694,958,080 + ��� + 1 calculated in al-Kāshī’s extrac-
tion of the fifth root is equal to 5375 − 5365.

19. Use al-Baghdādī’s method and format (as in Fig. 29) to supply the details of the
computation of the zakāt for year two.
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